skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tran, Ngoc"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Autism Spectrum Disorder (ASD) is a neurodevelopmental condition often associated with delayed motor skills. The Motor Assessment Battery for Children – Second Edition (MABC-2) is a standardized motor assessment for identifying motor delays pertaining to ASD. It evaluates fine and gross motor tasks across three domains: Manual Dexterity, Aiming & Catching, and Balance. These tasks are categorized into three age bands: 3-6, 7-10, and 11-16. Virtual Reality (VR) has emerged as a promising intervention in the ASD realm. This study aimed to investigate the potential of VR to assist children with ASD in performing the gross motor skills (i.e., ball skills and balance) in the MABC-2. The children who participated in the study were attendees of a local Autism Summer Camp. Our research focused on adapting motor tasks for ages 7-10 (i.e., Age Band 2) to VR, as most campers fell in this age range. Within the VR environment, children could observe avatar demonstrations and practice motor skills in a highly immersive setting. The VR environment featured avatars demonstrating ball skills and balancing tasks. Developed with the Unity game engine, 3D software Blender, C# scripting, and mixed reality toolkits, this environment was tested on the Meta Quest 2 Oculus. The children's gross motor skill performance was scored before and after VR interactions. The test standard scores were categorized through a traffic-light scoring system comprising red, amber, and green zones. A standard score ≤4 is classified in the red zone, indicating a significant movement difficulty; a standard score >4 and ≤7 is classified in the amber zone, indicating a risk for movement difficulty; and a standard score >7 is classified in the green zone, indicating no movement difficulty detected. Following the VR intervention, we observed a notable improvement in the balance score (p < 0.05). Furthermore, using the Random Forest machine learning model, we analyzed a combined dataset of MABC-2 scores from 250 children across all age bands from the Autism Summer Camp in previous years and the MABC-2 scores from the 18 children in the present study. Our analysis revealed that Balance was crucial in classifying children with ASD with motor delays, with an importance score of 0.195, nearly double that of Manual Dexterity and Aiming & Catching. When the model was exclusively applied to the Balance component score, it achieved an impressive accuracy rate of 91% in identifying children with ASD. In summary, our findings underscore the promise of VR in enhancing balance among children with ASD. The Random Forest analysis reaffirmed the significant role of balance in identifying children with ASD. Given its precision in detecting children with ASD based on their balance performance, we anticipate the potential of future machine learning advancements in this field. Our research validates the effectiveness of a VR-based approach and emphasizes the significance of collaborative research in providing valuable support to the underserved ASD population. 
    more » « less
  2. Random forests are a popular class of algorithms used for regression and classification. The algorithm introduced by Breiman in 2001 and many of its variants are ensembles of randomized decision trees built from axis-aligned partitions of the feature space. One such variant, called Mondrian forests, was proposed to handle the online setting and is the first class of random forests for which minimax optimal rates were obtained in arbitrary dimension. However, the restriction to axis-aligned splits fails to capture dependencies between features, and random forests that use oblique splits have shown improved empirical performance for many tasks. This work shows that a large class of random forests with general split directions also achieve minimax optimal rates in arbitrary dimension. This class includes STIT forests, a generalization of Mondrian forests to arbitrary split directions, and random forests derived from Poisson hyperplane tessellations. These are the first results showing that random forest variants with oblique splits can obtain minimax optimality in arbitrary dimension. Our proof technique relies on the novel application of the theory of stationary random tessellations in stochastic geometry to statistical learning theory. 
    more » « less
  3. Abstract We show that a competitive equilibrium always exists in combinatorial auctions with anonymous graphical valuations and pricing, using discrete geometry. This is an intuitive and easy-to-construct class of valuations that can model both complementarity and substitutes, and to our knowledge, it is the first class besides gross substitutes that have guaranteed competitive equilibrium. We prove through counter-examples that our result is tight, and we give explicit algorithms for constructing competitive pricing vectors. We also give extensions to multi-unit combinatorial auctions (also known as product-mix auctions). Combined with theorems on graphical valuations and pricing equilibrium of Candogan, Ozdagar and Parrilo, our results indicate that quadratic pricing is a highly practical method to run combinatorial auctions. 
    more » « less
  4. The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades—primarily plant—associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions. 
    more » « less
  5. A usability study evaluated the ease with which users interacted with an author-designed modeling and simulation program called STEPP (Scaffolded Training Environment for Physics Programming). STEPP is a series of educational modules for introductory algebra-based physics classes that allow students to model the motion of an object using Finite State Machines (FSMs). STEPP was designed to teach students to decompose physical systems into a few key variables such as time, position, and velocity and then encourages them to use these variables to define states (such as running a marathon) and transitions between these states (such as crossing the finish line). We report the results of a usability study on high school physics teachers that was part of a summer training institute. To examine this, 8 high school physics teachers (6 women, 2 men) were taught how to use our simulation software. Data from qualitative and quantitative measures revealed that our tool generally exceeded teacher’s expectations across questions assessing: (1) User Experience, (2) STEM-C Relevance, and (3) Classroom Applicability. Implications of this research for STEM education and the use of modeling and simulation to enhance sustainability in learning will be discussed. 
    more » « less
  6. How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature. This pattern of enrichment could explain several emergent cell behaviors, such as expanding and self-straightening lamellipodia and the ability of endothelial cells to recognize and seal transcellular holes. The WAVE complex recruits IRSp53 to sites of saddle curvature but does not depend on IRSp53 for its own localization. Although the WAVE complex stimulates actin nucleation via the Arp2/3 complex, sheet-like protrusions are still observed in ARP2-null, but not WAVE complex-null, cells. Therefore, the WAVE complex has additional roles in cell morphogenesis beyond Arp2/3 complex activation. Our work defines organizing principles of the WAVE complex lamellipodial template and suggests how feedback between cell shape and actin regulators instructs cell morphogenesis. 
    more » « less
  7. The low-cost and easy-to-use nature of rapidly developed PM2.5 sensors provide an opportunity to bring breakthroughs in PM2.5 research to resource-limited countries in Southeast Asia (SEA). This review provides an evaluation of the currently available literature and identifies research priorities in applying low-cost sensors (LCS) in PM2.5 environmental and health research in SEA. The research priority is an outcome of a series of participatory workshops under the umbrella of the International Global Atmospheric Chemistry Project–Monsoon Asia and Oceania Networking Group (IGAC–MANGO). A literature review and research prioritization are conducted with a transdisciplinary perspective of providing useful scientific evidence in assisting authorities in formulating targeted strategies to reduce severe PM2.5 pollution and health risks in this region. The PM2.5 research gaps that could be filled by LCS application are identified in five categories: source evaluation, especially for the distinctive sources in the SEA countries; hot spot investigation; peak exposure assessment; exposure–health evaluation on acute health impacts; and short-term standards. The affordability of LCS, methodology transferability, international collaboration, and stakeholder engagement are keys to success in such transdisciplinary PM2.5 research. Unique contributions to the international science community and challenges with LCS application in PM2.5 research in SEA are also discussed. 
    more » « less